研究了无穷格子系统q(n)+f'(g(n))=V^t(g(n+1)-g(n))-V^t(g(n)-g(n-1)),n∈Z周期行波解的存在性.其中:q(n)=q(n,t)是第n个质点在t时刻的坐标;f表示质点的位势函数;V表示相邻2个质点间的相互作用函数.应用山路定理和环绕定理,获得了该系统新型周期行波解的存在性定理.
It was focused on the infinite lattice systemsq(n)+f'(g(n))=V^t(g(n+1)-g(n))-V^t(g(n)-g(n-1)),n∈Z where q ( n) = q ( n, t ) denoted the coordinate of n-th particle at time t, f a potential function and V the potential of interaction between n-th and (n- 1)-th particles. The existence of new type periodic travelling wave solutions was established by mountain pass theorem and link theorem.