研究了一类带有Hardy项和Sobolev—Hardy临界指数的椭圆方程{-△u-u+h(x)/|x|2u=|u|2·(s)-2/|x|s u+λ|u|q-2 u,x∈Ω; u=0,x∈ Ω。通过运用变分方法和精确估计得到了非平凡解u∈D 1,2(Ω)的存在性.其中:Ω R N(N≥3)是一个有界光滑区域,0∈Ω,λ〉0,u∈R,0≤s〈2.
It was discussed a class of elliptic equations involving Hardy terms and Sobolev-Hardy critical exponents {-△u-u+h(x)/|x|2u=|u|2·(s)-2/|x|s u+λ|u|q-2 u,x∈Ω; u=0,x∈ Ω.The existence of nontrivial solutions was proved via variational methods and delicate estimates, where Ω R N(N≥3) was an bounded domain with smooth boundary and containing the origin 0,λ〉0,u∈R,0≤s〈2.