Hydrogels 源于小肽自己组装当他们的 nanostructuring 能被象 pH,离子的力量和温度那样的环境刺激乐意地调节,是聪明的 nanobiomaterials,从而赞成他们的实际应用。这个工作响应氧化还原作用环境报导肽 hydrogels 的形成的试验性的观察。Ac-I3K-NH2 是短肽 amphiphile 进长 nanofibers 和它的胶化形成容易地自我装配发生在大约 10 mmol/L 的集中。进吸水的区域的 Cys 残余的介绍导致一个新分子, Ac-I3CGK-NH2,那启用在自我装配的 nanofibers 之间的二硫化物契约的形成,因此赞成 cross-linking 并且支持 hydrogel 形成。在氧化环境下面, Ac-I3CGK-NH2 在低得多的集中形成了 hydrogels (甚至在 0.5 mmol/L ) 。而且, hydrogels 的力量能被在氧化、减少的条件和时间之间切换容易调节。然而, AFM, TEM,和 CD 大小揭示了小词法、结构的变化在分子并且 nano 尺寸,出现不明显的影响从二硫化物契约形成产生。
Hydrogels resulting from the self-assembly of small peptides are smart nanobiomaterials as their nanostructuring can be readily tuned by environmental stimuli such as pH, ionic strength and temperature, thereby favoring their practical applications. This work reports experimental observations of formation of peptide hydrogels in response to the redox environment. Ac-I3K-NH2 is a short peptide amphiphile that readily self-assembles into long nanofibers and its gel formation occurs at concentrations of about 10 mmol/L. Introduction of a Cys residue into the hydrophilic region leads to a new molecule, Ac-I3CGK-NH2, that enables the formation of disulfide bonds between self-assembled nanofibers, thus favoring cross-linking and promoting hydrogel formation. Under oxidative environment, Ac-I3CGK-NH2 formed hydrogels at much lower concentrations (even at 0.5 mmol/L). Furthermore, the strength of the hydrogels could be easily tuned by switching between oxidative and reductive conditions and time. However, AFM, TEM, and CD measurements revealed little morphological and structural changes at molecular and nano dimen- sions, showing no apparent influence arising from the disulfide bond formation.