位置:成果数据库 > 期刊 > 期刊详情页
归一Laplacian矩阵有监督最优局部保持映射故障辨识
  • ISSN号:0577-6686
  • 期刊名称:《机械工程学报》
  • 时间:0
  • 分类:TH165[机械工程—机械制造及自动化] TN911[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]四川大学制造科学与工程学院成都610065, [2]重庆大学机械传动国家重点实验室重庆400030
  • 相关基金:四川大学青年教师科研启动基金(2012SCU11051); 重庆市自然科学杰出青年基金(CQ cstc2011jjjq70001); 国家自然科学基金(51275546)资助项目
中文摘要:

提出基于归一化Laplacian矩阵有监督最优局部保持映射(Normalized Laplacian-based supervised optimal locality preserving projection,NL-SOLPP)维数化简的故障辨识方法。构造全面表征不同故障特性的时频域特征集,利用NL-SOLPP将高维时频域特征集自动约简为区分度更好的低维特征矢量,并输入到Shannon小波支持向量机中进行故障模式辨识。NL-SOLPP结合流形局部结构和类标签来设计相似加权矩阵,并使输出基矢量统计不相关和相互正交,提高了故障辨识精度。深沟球轴承故障诊断和空间轴承寿命状态辨识实例验证了该方法的有效性。

英文摘要:

A novel fault diagnosis method based on feature compression with normalized Laplacian-based supervised optimal locality preserving projection (NL-SOLPP) is proposed. The time-frequency domain feature set is first constructed to completely characterize the property of each fault. NL-SOLPP is introduced to automatically compress the high-dimensional time-frequency domain feature sets of training and test samples into the low-dimensional eigenvectors which have better discrimination. The low-dimensional eigenvectors of training and test samples are input into Shannon wavelet support vector machine (SWSVM) to carry out fault identification. NL-SOLPP considers both local information and class labels in designing the similarity weight matrix and requires the output basis vectors to be statistically uncorrelated and orthogonal, therefore, it achieves higher fault identification accuracy. Fault diagnosis example on deep groove ball bearings and life state identification example on one type of space bearing demonstrated the effectivity of proposed method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机械工程学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:宋天虎
  • 地址:北京百万庄大街22号
  • 邮编:100037
  • 邮箱:bianbo@cjmenet.com
  • 电话:010-88379907
  • 国际标准刊号:ISSN:0577-6686
  • 国内统一刊号:ISSN:11-2187/TH
  • 邮发代号:2-362
  • 获奖情况:
  • 中国期刊奖,“中国期刊方阵”双高期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:58603