位置:成果数据库 > 期刊 > 期刊详情页
基于智能手机传感器数据的人类行为识别研究
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:浙江师范大学数理与信息工程学院,浙江金华321000
  • 相关基金:国家自然科学基金(No.61402418,No.61170108,No.61503342);教育部人文社科研究项目(No.12YJCZH142,No.15YJC-ZH125);浙江省公益技术研究社会发展项目(No.2016C33168);浙江省自然科学基金(No.LY13F020017,No.LY15F020013,No.LQ13F020007,No.LY16F030002,No.LQ16F020002);信息网络安全公安部重点实验室-般项目资助(No.C15610);上海市信息安全综合管理技术研究重点实验室开放基金(No.AGIK2013003).
中文摘要:

运用智能手机传感器数据进行人类行为识别研究在医疗服务、智能环境和网络空间安全等领域有许多重要应用。目前,大多数的分类方法识别率都不高,尤其是在医疗服务领域。为了提高行为活动的识别准确率,先利用稀疏局部保持投影降维,将实验的数据集进行特征约简得到最优的实验特征子集,再用随机森林集成分类器完成了人类行为识别。实验结果证明,该方法不仅明显地降低了实验的特征数量,而且提高了整体精确度。

英文摘要:

Recognition of human activity from the smartphone of sensory data has many important applications in many fields, such as healthcare services, intelligent environments and cyber security. Classification accuracy of most existed methods is not enough in many applications, especially for healthcare services. In order to improve accuracy, the paper proposes a Random Forest(RF)approach to recognize human activities and choose Sparse Local Preserving Projection (SpLPP)as the method of feature reduction. Firstly, the optimal feature subsets are determined by LPP. Secondly, the results of activity recognition are classified by RF ensemble classifier. Compared with other methods, the method uses the significantly less number of features, and the over-all accuracy has been increased.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887