现有的敏感属性多样性模型均没有考虑敏感值间的语义相似性,不能很好地抵制近似攻击.为此,本文在(k,l)-匿名模型的基础上,提出可抵制近似攻击的(k,l,e)-匿名模型,该模型要求匿名数据中的每个等价类都满足k-匿名约束,且等价类中至少有l个互不e-相近的敏感值.实验结果表明,满足(k,l,e)-匿名模型的匿名数据比满足(k,l)-匿名模型的匿名数据具有更高的多样度,能够更有效地保护个体隐私.
Existing sensitive attributes diversity models do not consider the semantic similarity between sensitive values and can not resist approximate attack. To solve the problem,this paper proposes a(k,l,e)-anonymity model based on( k,l)-anonymity model.The proposed model requires that each equivalence class satisfy k-anonymity constraints,and at the same time there exist at least l sensitive values in one equivalence class which are not e-similar each other. The paper also proposes a(k,l,e)-KACA algorithm to implement(k,l,e)-anonymity. Experimental results show that the anonymous data satisfying(k,l,e)-anonymity have higher diversity than that satisfying(k,l)-anonymity model,so( k,l,e)-anonymity model can protect privacy more effective than( k,l)-anonymity model.