位置:成果数据库 > 期刊 > 期刊详情页
一种核Fisher判别分析的快速算法
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安电子科技大学计算机学院,西安710071, [2]西安电子科技大学雷达信号处理国家重点实验室,西安710071, [3]济南大学理学院,济南250012, [4]中国科学院声学研究所,北京100080
  • 相关基金:国家自然科学基金(60574039,60371044)和国家部级基金资助课题
中文摘要:

针对训练样本多时核Fisher判别分析(KFDA)的计算代价大,特征提取速度慢问题,本文提出一种KFDA的快速算法。该算法首先基于线性相关性理论,设计出一种优化方法,快速寻找训练样本在特征空间所张成的子空间的一组基;然后用这组基线性表示最佳投影方向,结合特征空间中的Fisher准则函数,推导出求解最佳投影方向的新公式,其求解过程只需对一个阶数等于基的个数的矩阵特征值分解,同时提取某样本特征时只需计算该样本与这组基之间的核函数。基于多个数据集的实验验证了该算法的有效性。

英文摘要:

The standard Kernel Fisher Discriminant Analysis(KFDA) may suffer from the large computation complexity and the slow speed of feature extraction for the case of large number of training samples. To tackle these problems, a fast algorithm of KFDA is presented. The algorithm firstly proposes an optimized algorithm based on the theory of linear correlation, which finds out a basis of the sub-space spanned by the training samples mapped onto the feature space and which avoids the operation of matrix inversion ; Then using the linear combination of the basis to express the optimal projection vectors, and combining with Fisher criterion in the feature space, a novel criterion for the computation of the optimal projection vectors is presented, which only needs to calculate the eigenvalue of a matrix which size is the same as the number of the basis. In addition, the feature extraction for one sample only needs to calculate the kernel functions between the basis and the sample. The experimental results using different datasets demonstrate the validity of the presented algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739