位置:成果数据库 > 期刊 > 期刊详情页
基于核的类别非局保留投影
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安电子科技大学计算机学院,西安710071
  • 相关基金:国家自然科学基金资助项目(No.60371044,60574039,60533010)
中文摘要:

提出一种线性特征提取方法——类别非局保留投影.并进行核扩张,称为基于核的类别非局保留投影.基于非局保留投影特征提取方法,类别非局保留投影采用类间信息指导特征提取,同时考虑样本的关系信息和类别信息,并通过核技巧实现原输入空间的非线性判别.通过对yeast和NCI基因表达数据进行特征提取,对文中方法进行测试和评价.实验结果表明,该方法能获得较高的识别率.

英文摘要:

A feature extraction method is proposed, namely class-wise non-locality preserving projection (CNLPP). The kernelized counterpart of CNLPP linear feature extractor is also established. Based on the linear feature extractor-non-locality preserving projection (NLPP), CNLPP utilizes between-class information to guide the procedure of feature extraction. CNLPP takes both the relation information and the class information into account. A kernel version of CNLPP, namely Kernel based CNLPP (KCNLPP), is developed by applying the kernel trick to CNLPP to enhance its performance on nonlinear feature extraction. Experiments on yeast gene expression data and NCI gene expression data are performed to test and evaluate the performance of the proposed algorithm, and the results show that KCNLPP achieves relatively high recognition accuracy.

同期刊论文项目
期刊论文 106 会议论文 19 获奖 2 专利 5
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169