位置:成果数据库 > 期刊 > 期刊详情页
改进的蚂蚁聚类算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山东师范大学管理与经济学院,济南250014
  • 相关基金:国家自然科学基金资助项目(60873058); 山东省自然科学基金资助项目(Z2008G04)
中文摘要:

提出了一种改进的基于对称点距离的蚂蚁聚类算法。该算法不再采用Euclidean距离来计算类内对象的相似性,而是使用新的对称点距离来计算相似性,在处理带有对称性质的数据集时,可以有效地识别给定数据集的聚类数目和合适的划分。在该算法中,用人工蚂蚁代表数据对象,根据算法给定的聚类规则来寻找最合适的聚类划分。最后用本算法与标准的蚂蚁聚类算法分别对不同的数据集进行了聚类实验。实验结果证实了算法的有效性。

英文摘要:

This paper proposed an improved ant clustering algorithm based on point symmetry distance. Assignment of points to different clusters was done based on point symmetry distance rather than the traditional Euclidean distance. It could defect the number of clusters and the proper partitions from data set when data sets possess the property of symmetry. In the algorithm,each ant represented a data object. It would decide its next moving position according to clustering rules. Comparing the standard ant clustering algorithm,it demonstrated the effectiveness of point symmetry-based ant clustering algorithm for different data sets.

同期刊论文项目
期刊论文 29 会议论文 21
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049