位置:成果数据库 > 期刊 > 期刊详情页
基于广义离散Morse理论的强关联规则挖掘
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山东师范大学信息科学与工程学院,山东济南250014, [2]山东师范大学管理与经济学院,山东济南250014
  • 相关基金:国家自然科学基金重大项目(60873058 60743010); 山东省自然科学基金重大项目(Z2007G03)
中文摘要:

由于分形图像压缩技术具有解码分辨率无关性、快速编码及高压缩比和低损耗率等特点而被广泛应用,但基于迭代函数系统的分形图像编码方法却存在着计算量大的缺点,采用神经网络对分形图像进行压缩及解压缩目的在于解决压缩时间较长等问题。文中使用神经网络方法以并行方式完成对分形图像的压缩与解压缩。并通过实验,在实验中结合非线性网络和最速下降法实现对分形图像的压缩,在基本保证重建图像质量的前提下,减少了压缩时间,提高了压缩质量,进而说明神经网络技术应用于分形图像压缩中的可行性。

英文摘要:

In image compression technology,fractal image packing coding method has some characters such as irrelevance of decoding resolution ratio,fast encoding,high compression ratio and low rate of loss and so on.But the fractal image packing coding method based on iterative function system has some shortcomings,likes huge calculated amount.Neural networks is used in image compression and decompression,in order to resolve issues such as decompression time is too long.Gives the parallel method of neural network to finish the count of fractal image compression and decompression.And in the experiment,nonlinear nework and method of steepest descent are combined for fractal image compression.On the premise of quality assurance of the reconstruction image,times are shorten,qualities are improved.This shows the feasibility of neural network is used in fractal image compression and decompression.

同期刊论文项目
期刊论文 29 会议论文 21
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139