位置:成果数据库 > 期刊 > 期刊详情页
基于综合推理的多媒体语义挖掘和跨媒体检索
  • ISSN号:1003-9775
  • 期刊名称:计算机辅助设计与图形学学报
  • 时间:0
  • 页码:109-116
  • 语言:中文
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江大学计算机科学与技术学院,杭州310027
  • 相关基金:国家杰出青年基金(60525108);国家自然科学基金(60533090);浙江省科技计划项目(2008C13075).
  • 相关项目:智能信息处理
中文摘要:

为了更准确地进行跨媒体检索,需要挖掘、学习不同类型多媒体对象之间的语义关联,为此提出一种基于综合推理模型的多媒体语义挖掘和跨媒体检索技术.首先根据多媒体对象的底层特征构造推理源,根据多媒体对象的共生关系构造影响源场来进行综合推理,并构造出多媒体语义空间;然后针对不同检索例子,根据伪相关反馈为每一个检索例子自适应地选择不同的检索方法进行跨媒体检索.为了处理检索例子不在训练集合内的情况,提出了两阶段学习方法完成检索;同时还提出了一种基于日志的长程反馈学习算法,以提高系统性能.实验结果证明,该技术能够准确地挖掘多媒体语义,多媒体文档检索和跨媒体检索效果准确且稳定.

英文摘要:

To gain better cross-media retrieval performance, it is crucial to mine the semantic correlations among the heterogeneous multimedia data. In this paper, we adopt the synthesis reasoning model as the underlying mechanism to mining the multimedia semantics for cross-media retrieval. We construct the synthesis reasoning sources according to the multimedia object low-level features and the reasoning source intensity field according to the multimedia co-existence information. A series of multimedia semantic spaces are built by spectral method after synthesis reasoning. The cross-media retrieval is performed on a per-query basis by which different retrieval methods are adopted for different queries. Both short term and long term relevance feedback are learned to introduce the new multimedia objects into the multimedia semantic spaces which were not in the training set, to refine the reasoning result. Experimental results show that the proposed methods can be used to accurately mine the multimedia semantics and the approach of cross-media retrieval is accurate and stable.

同期刊论文项目
期刊论文 92 会议论文 32 获奖 1 专利 15
期刊论文 49 会议论文 18 获奖 1 专利 20 著作 1
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752