利用波包分析量子力学体系的动力学行为在研究经典和量子的对应关系方面越来越成为一个非常重要的方法,利用高斯波包分析方法,我们计算了矩形弹子球体系的自关联函数,自关联函数的峰和经典周期轨道的周期符合的很好,这表明经典周期轨道的周期可以通过含时的量子波包方法产生。我们还讨论了矩形弹子球的波包回归和波包的部分回归,计算结果表明在每一个回归时间,波包出现精确的回归,对于动量为零的波包,初始位置在弹子球内部的特殊对称点处,出现一些时间比较短的附加的回归。
The use of wave packet to analyze the dynamics of quantum mechanical systems is an increasingly important method to the study of the classical-quantum correspondence. Using the quantum Gaussian wave packet analysis method, we calculate the autocorrelation function of the rectangular billiard, the peak positions of the autocorrelation function match well with the periods of the classical periodic orbits, which show that the period of the classical orbits can be produced by the time-dependent quantum wave packet method. We also discuss wave packet revivals and fractional revivals in the rectangular billiard, the results show that there are exact revival for all wave packet at each revival time. We find additional cases of exact revivals with short revival times for zero-momentum wave packets initially located at special symmetry point inside the billiard.