利用庞加莱截面和相空间轨迹方法对粒子在Henon-Heiles势中的逃逸动力学进行了模拟.粒子的动力学性质敏感地依赖于粒子的能量.数值计算表明当能量很小时,粒子的运动是规则的;随着能量的增加,粒子的运动开始出现混沌.当能量增加到鞍点能E时,几乎所有的相空间轨迹都是混沌的.当粒子的能量E〉E,粒子可以越过势阱发生逃逸.对于给定的大于Es的能量,我们画出了粒子的逃逸一时间曲线和逃逸轨迹.我们的研究对于研究混沌传输和逃逸动力学具有一定的参考价值.
The escape dynamical simulations of a particle in Henon-Heiles potential are presented by using the Poincare surface of section and phase space trajectories method. The dynamical character of the particle depends sensitively on its energy E. The numerical calculations show as the energy is small, the particle's motion is regular; with the increase of the energy, chaotic motion begins to appear. When the energy is increased to the saddle point energy E,, nearly all the phase space trajectory is chaotic. When E E,, the particle can escape from the potential well. For a given energy above E,, the escape-time curve and the escape trajectories are also plotted. This study will be very useful for studying the chaotic transport and escape dynamics.