位置:成果数据库 > 期刊 > 期刊详情页
基于粒子群算法与改进BP神经网络的水电机组轴心轨迹识别
  • 期刊名称:中国电机工程学报(已录用)
  • 时间:0
  • 分类:TM312[电气工程—电机]
  • 作者机构:[1]西安理工大学水利水电学院,陕西省西安市710048
  • 相关基金:国家自然科学基金项目(50779056).
  • 相关项目:水轮机振动故障的智能诊断研究
中文摘要:

在水电机组状态检修系统中,轴心轨迹是判断机组状态的一个重要特征。该文提出边缘检测和矩特征提取相结合的方法,利用粒子群寻优算法来获取与待识别样本最接近的已知样本,应用改进的BP神经网络进行识别,将轴心轴迹的不变性矩作为神经网络的特征参数,对几种典型的轴心轨迹进行了辨识。某水电站机组试验表明该方法识别速度快、精度高,具有较高的实用价值。

英文摘要:

In the maintenance system of hydropower units, shaft centerline orbit is an important feature for the diagnosis of the unit condition. An algorithm combining edge detection with moment feature extraction was presented. Particle swarm optimization (PSO) algorithm was used to obtain the nearest known sample with samples to be identified. This paper applied improved BP neural network for identification. It took the invariant moments of shaft centerline orbit as the characteristic parameters of neural networks. Some typical orbits were also identified. Experiments in some hydropowcr station show that this identification method is fast and precise, with a highly practical value.

同期刊论文项目
同项目期刊论文