位置:成果数据库 > 期刊 > 期刊详情页
基于小波预处理的HHT方法在水轮机振动诊断中的应用
  • 期刊名称:大电机技术,2010,(4):45-49
  • 时间:0
  • 分类:TP277[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TK730.8[交通运输工程—轮机工程;动力工程及工程热物理—流体机械及工程]
  • 作者机构:[1]西安理工大学,西安710048, [2]甘肃省水利水电学校,兰州730021, [3]刘家峡水电厂,甘肃永靖731600
  • 相关基金:国家自然科学基金项目(50779056)
  • 相关项目:水轮机振动故障的智能诊断研究
中文摘要:

提出了基于小波去噪、降采样和HHT变换的方法。该方法先利用小波进行信号去噪,克服噪声对EMD分解的影响。其次,为获得正确的IMF分量和Hilbert谱,采用降采样方法对信号进行重采样,继而得到适当的采样率。最后,进行EMD分解提取具有明确物理意义的水轮机振动模式分量信号,再对各分量信号进行Hilbert谱分析,从而识别信号的异常频率和发生时间。并将该方法应用于某电站1号机组振动信号分析,结果表明,基于小波预处理的水轮机振动信号Hilbert-Huang变换方法能对机组性能做出良好评价,值得推广应用。

英文摘要:

This paper put forward a method which is based on wavelet pretreatment and downsampling combined with Hilbert-Huang Transform (HHT). First, this method requires the wavelet de-noising of filtered signals to overcome the noise influence on HHT. Besides, to achieve correct IMF component and Hilbert spectrum, the downsampling method is used to resample the signals so as to obtain appropriate sampling rate. In the end, EMD is decomposed to extract the hydraulic turbine vibration mode component signals with explicit physical meaning and each component signal is going through Hilbert Spectrum analysis, so that the abnormal frequency and occurrence time of the signals can be identified. This method was applied to a power station on the 1st vibration signal analysis, the results show that the pretreatment of turbine vibration signal wavelet Hilbert-Huang transform method can make a good evaluation of performance on the unit, should be widely applied.

同期刊论文项目
同项目期刊论文