位置:成果数据库 > 期刊 > 期刊详情页
基于小波分析的水力机组故障诊断奇异数据还原研究
  • 期刊名称:西安理工大学学报, 2010, Vol.26(3):255-259.
  • 时间:0
  • 分类:F830.5[经济管理—金融学]
  • 作者机构:[1]西安理工大学水利水电学院,陕西西安710048
  • 相关基金:国家自然科学基金资助项目(50779056).
  • 相关项目:水轮机振动故障的智能诊断研究
中文摘要:

采用小波变换中奇异信号检测的基本原理,首先检测出信号中的奇异点,将奇异点剔除后再通过处理过的细节系数和近似系数一起重构信号,根据重构信号再对机组进行重新分析。实例仿真结果表明,小波能够正确识别水力机组奇异信号,并对机组信号进行准确重构,基于此可正确认识机组故障并准确描述机组状态。

英文摘要:

In this paper, the fundamental principle for detecting signal singularity in wavelet transformation is applied. First, the singularity in signals is detected. Secondly the singularity points are removed and the signals are reconstructed by processed detail coefficients and approximate coefficients. Then, the reconstructed signals are used to analyze the sets once again. The example simulation shows that wavelet can discern singularity signals correctly and reconstruct them properly, on the basis of which, the faults in generating sets can be correctly recognized and the state of generating sets can be accurately described.

同期刊论文项目
同项目期刊论文