该文研究全空间R^N上带权的半线性椭圆型方程 -△u=|x|^α|u|^p-1u,x∈R^N 与半空间R+^N={x∈R^N:xN〉0}上带权的半线性椭圆型问题 -△u=|x|^α|u|^p-1u,x∈R+^N,u| R+^N=0 的Liouville型定理,其中N≥3,α〉-2.证明了,当1〈p〈N+2α+2/N-2时,上述问题的Morse指数有限的有界解只能是零解.
This paper is concerned with Liouville type theorems for weighted semilinear elliptic equations -△u=|x|^α|u|^p-1u,x∈R^N and -△u=|x|^α|u|^p-1u,x∈R+^N,u| R+^N=0 where N ≥ 3 and α 〉 -2. We prove that the bounded solutions of the above problems with finite Morse indices are zero when 1〈p〈N+2α+2/N-2.