该文研究带凹凸项的分数阶Laplace方程{(-Δ)^su=λa(x)|u|^q-2u+b(x)|u|^p-2u在Ω上,u=0 在Rn/Ω上解的存在性,其中Ω是Rn中的有界区域,s∈(0,1),q∈(1,2),p∈(2,2s^*],2s^*=2n/n-2s,n>2s,λ>0,a(x)和b(x)都是有界连续函数,且b(x)非负、a(x)变号.应用山路引理,证明了方程在临界和次临界情形下,至少有一个非负非平凡解;而且,利用喷泉定理,证明了方程在次临界情形下有无穷多个解.
In this paper, we investigate the existence of solutions for the following equation with the fractional Laplacian (-△)8 and concave-convex nonlinearities,{(-Δ)su=λa(x)|u|q-2u+b(x)|u|p-2u inΩ inR^n/Ω where,s∈(0,1),q∈(1,2),p∈(2,2*s],2*s=2n/n-2s,n〉2s,λ〉0,Ωis a bounded domain of R^n, a(x) and b(x) are bounded continuous with b(x) ≥ 0 and a(x) changes signs. We not only prove the existence of nontrivial nonnegative solutions by the Mountain Pass LemIna when p is subcritical and critical, but also, by using Fountain Theorem, we obtain infinitely many solutions for the subcritical case.