设k是特征为0的代数闭域,H为其上的余半单Hopf代数,本文证明了当H有型:l:1+m:P+1:q(其中P^2〈q)或1:1+1:m+1:n时,它具有frobenius性质,即对此类Hopf代数,Kaplansky猜想是正确的。
Let H be a cosemisimple Hopf algebra over an algebraically closed field k of characteristic zero. We show that if H is of type l : 1 + m : p + 1 : q with p2 〈 q, or of type 1 : 1 + 1 : m + 1 : n in the sense of Larson and Radford, then H has the Frobenius property, that is, Kaplansky conjecture is true for these Hopf algebras.