位置:成果数据库 > 期刊 > 期刊详情页
多目标优化算法在多分类中的应用研究
  • ISSN号:0372-2112
  • 期刊名称:电子学报
  • 时间:2012.11.11
  • 页码:2264-2269
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安电子科技大学智能感知与图像理解教育部重点实验室,陕西西安710071
  • 相关基金:国家自然科学基金(No.61001202,No.61072139,No.61003199);中国博士后科学基金(No.201104658,No.20090451369,No.20090461283);陕西省自然科学基础研究计划(No.2010JQ8023,No.2011JQ8010);国家教育部博士点基金(No.20100203120008,No.20090203120016,No.200807010003);高等学校学科创新引智计划(No.B07048);教育部“长江学者和创新团队发展计划”(No.IRT1170)
  • 相关项目:结合免疫和拉马克机制的协同进化模型及其应用研究
中文摘要:

Cai等人用多目标粒子群算法(MOPSO)优化多目标聚类学习和分类学习框架(MSCC)的多目标问题时,种群只能得到少量的非支配解,不利于种群优化.而在此情况下,NSGA-Ⅱ由于采用了Pareto排序的方法,种群中会保留大量优秀的支配解,有利于种群优化,所以本文引进了NSGA-Ⅱ优化MSCC框架的多目标问题.通过对数据集的测试,验证了在NSGA-Ⅱ的优化下,对于大多数测试问题,MSCC框架设计的分类器的最大分类正确率高于MOPSO优化MSCC框架的结果.进而对实验结果做了进一步分析,发现了最大正确率不随多目标优化算法的优化过程而提高的问题.

英文摘要:

When Multi-objective Particle Swarm Optimization(MOPSO) optimizes the multi-objective problems of the multiobjective simultaneous learning framework(MSCC),there are only a few nondominated solutions in MOPSO population.In this case,NSGA-II can keep a lot of good dominated solutions in the population,which will help the population optimize,so this paper brought in NSGA-II as the optimization algorithm.The results of experiments show that,under the optimization of NSGA-II,MSCC framework can get better multi-class classifiers.However,dominated solutions can get better classifiers than nondominated solutions.By observing the changing curves of the maximum classification accuracy rate following with the optimization of populations,this paper found that,when dealing with most of the data sets,the maximum accuracy is not improved following the optimization of populations.

同期刊论文项目
期刊论文 53 会议论文 8 获奖 2 专利 3 著作 1
期刊论文 39 会议论文 4 专利 5 著作 1
同项目期刊论文
期刊信息
  • 《电子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:郝跃
  • 地址:北京165信箱
  • 邮编:100036
  • 邮箱:new@ejournal.org.cn
  • 电话:010-68279116 68285082
  • 国际标准刊号:ISSN:0372-2112
  • 国内统一刊号:ISSN:11-2087/TN
  • 邮发代号:2-891
  • 获奖情况:
  • 2000年获国家期刊奖,2000年获国家自然科学基金志项基金支持,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:57611