设R为一个非Abel的半Abelianπ-正则环,证明了下述条件等价:1)R仅有2个极大理想;2)Id(R)-{1}是本原的;3)E(R)={0,1}且对于e∈S0r(R),f∈S0l(R)均有ef=0.进一步证明了如果S0l(R)R与RS0r(R)均为R的极大理想,那么R同构于一个正交准正则环与一个Abelianπ-正则环的亚直接和。
Assume that theπ-regular ring Ris non-Abelian and semi-Abelian.The following conditions are equivalent:1)there exist just two maximal ideals in R.2)Id(R)-{1}is primitive.3)E(R)={0,1}and ef=0for any e∈S0r(R),f∈S0l(R).Furthermore,supposing that S0l(R)Rand RS0r(R)are both maximal ideals of R,we can prove that R will be isomorphic to the subdirect sum of an orthogonal pri-regular ring and an Abelianπ-regular ring.