位置:成果数据库 > 期刊 > 期刊详情页
面向语音情感识别的语谱特征提取算法研究
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TN912.34[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]南京工程学院通信工程学院,南京211167, [2]东南大学信息科学工程学院,南京210096
  • 相关基金:国家自然科学基金(No.61273266,No.61375028,No.61301219);江苏省自然科学基金(No.BK20130241).
中文摘要:

语音情感识别的精度很大程度上取决于不同情感间的特征差异性。从分析语音的时频特性入手,结合人类的听觉选择性注意机制,提出一种基于语谱特征的语音情感识别算法。算法首先模拟人耳的听觉选择性注意机制,对情感语谱信号进行时域和频域上的分割提取,从而形成语音情感显著图。然后,基于显著图,提出采用Hu不变矩特征、纹理特征和部分语谱特征作为情感识别的主要特征。最后,基于支持向量机算法对语音情感进行识别。在语音情感数据库上的识别实验显示,提出的算法具有较高的语音情感识别率和鲁棒性,尤其对于实用的烦躁情感的识别最为明显。此外,不同情感特征间的主向量分析显示,所选情感特征间的差异性大,实用性强。

英文摘要:

The speech emotion recognition rate largely depends on the characteristic differences between different emotions.Through the analysis of time-frequency characteristics of speech and the simulation of the auditory selective attention mechanism, a speech emotion recognition algorithm is proposed based on the spectral feature. Firstly, based on the auditory selective attention mechanism, the speech signal is segmented, and the emotional saliency map is extracted from the time-frequency domain analysis of the segmented speech. Secondly, based on the saliency map, HU moment invariants features, texture features and some spectral features are used as the main features of speech emotion recognition.Finally, the speech emotion is recognized by the support vector machine. From the recognition results of emotional speech database, the proposed algorithm has higher speech emotion recognition rate and robustness, especially for the identification of practical irritable emotion. In addition, results of principal component analysis show that the characteristic differences between the selected emotions are more obvious and the algorithm is more practical.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887