位置:成果数据库 > 期刊 > 期刊详情页
自适应语音压缩感知方法
  • ISSN号:1001-0505
  • 期刊名称:东南大学学报(自然科学版)
  • 时间:0
  • 页码:1027-1030
  • 分类:TN912[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]东南大学水声信号处理教育部重点实验室,南京210096
  • 相关基金:国家自然科学基金资助项目(51075068,61201326,61231002,61273266); 教育部博士点基金资助项目(20110092130004); 江苏省高校自然科学研究基金资助项目(12KJB510021)
  • 相关项目:耳语音情感特征分析与识别方法研究
中文摘要:

针对固定正交基下语音信号稀疏化程度低、适应性差的问题,提出了一种自适应的语音稀疏化方法,并将其应用到语音压缩感知理论中.该方法首先采用线性预测系数的加权线性组合对语音信号进行线性预测,并以线性预测残差基作为信号基.然后,按照稀疏约束条件训练出稀疏表示的过完备字典,并交替应用1-范数稀疏约束的追踪和奇异值分解算法,达到字典与稀疏系数同步更新.该方法从信号特征入手,学习并提取特征或纹理信息,能较好地实现语音信号的稀疏化,提高语音压缩感知的重构性能.实验结果显示,与其他正交基方法相比,该方法的语音稀疏化程度高.语音质量的主客观评价结果显示,该方法具有良好的重构性能.

英文摘要:

To overcome the problem that the method of sparsification for speech signal based on fixed orthogonal base has a low sparsity and is not adaptive,a new adaptive sparsification algorithm is developed for speech signal compression.First,speech signal is predicted by linear predication using weighted linear combination of linear predictive coefficients,and the linear prediction residual are used as the signal bases.Then,the adaptive training dictionary is trained under the sparsity constraint,and the dictionary and sparsity coefficients are updated by alternatively using 1-norm sparsity constraint pursuit and singular value decomposition(SVD) algorithm.By analyzing the feature of speech signals,the new scheme can exactly extract essential feature or texture feature,and can obtain better sparsification performance and reconstruction performance for speech signal.The experimental results show that compared with other orthogonal base algorithms,the sparsity of speech signals with the proposed method is obviously improved.The subjective and objective evaluation results of speech quality also show that the proposed method exhibits a good reconstruction performance in speech signal.

同期刊论文项目
期刊论文 114 会议论文 7 专利 35
同项目期刊论文
期刊信息
  • 《东南大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:东南大学
  • 主编:毛善锋
  • 地址:南京四牌楼2号
  • 邮编:210096
  • 邮箱:xuebao@seu.edu.cn
  • 电话:025-83794323
  • 国际标准刊号:ISSN:1001-0505
  • 国内统一刊号:ISSN:32-1178/N
  • 邮发代号:28-15
  • 获奖情况:
  • 先后荣获第三届国家期刊奖百种重点期刊奖,2006-2...,2013年荣获首届江苏省新闻出版政府奖"报刊奖"
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23651