位置:成果数据库 > 期刊 > 期刊详情页
基于生物启发模型的AUV三维自主路径规划与安全避障算法
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]上海海事大学水下机器人与智能系统实验室,上海201306
  • 相关基金:国家自然科学基金项目(51279098);上海市科委创新行动计划项目(14JC102800,13510721400).
中文摘要:

针对自治水下机器人(AUV)的路径规划问题,在三维栅格地图的基础上,给出一种基于生物启发模型的三维路径规划和安全避障算法.首先建立三维生物启发神经网络模型,利用此模型表示AUV的三维工作环境,神经网络中的每一个神经元与栅格地图中的位置单元一一对应;然后,根据神经网络中神经元的活性输出值分布情况自主规划AUV的运动路径.静态环境与动态环境下仿真实验结果表明了生物启发模型在AUV三维水下环境中路径规划和安全避障上的有效性.

英文摘要:

For the problem of path planning for the autonomous underwater vehicle(AUV), in a 3-D grid map, an algorithm based on the biological inspired model for 3-D path planning and safe obstacle avoidance is proposed. Firstly, based on the establishment of 3-D biological inspired neural network model, the AUV 3-D working environment is represented. There is one-to-one correspondence between each neuron in the neural network and the position of the grid map. Then, the motion path of the AUV is planned on the basis of the distribution of neurons' active output value in neural network. Finally, the simulation results of path planning in the static and dynamic environment show that biological inspired model can solve effectively the path planning and safe obstacle avoidance for the AUV in the 3-D underwater environment.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961