位置:成果数据库 > 期刊 > 期刊详情页
基于Tri-training算法的构造性学习方法
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽大学.智能计算与信号处理教育部重点实验室, [2]数学科学学院,合肥230039
  • 相关基金:国家“973”计划基金资助项目(2007BC311003);国家自然科学基金资助项目(61073117);安徽大学创新团队基金资助项目(KJTD001B)
中文摘要:

构造性机器学习(cML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri-training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据进行标记,再将B标记数据加入到训练样本中,调整各分类网络参数,反复进行上述过程,直至获得稳定的分类器。实验结果证明,与CML算法和基于NB分类器的半监督学习算法相比,该方法的分类准确率更高。

英文摘要:

Constructive Machine Learning(CML) algorithm needs larger numbers of labeled examples to train a classification network, but it is difficult to obtain a mass of labeled examples. So this paper proposes a constructive learning method based on Tri-training algorithm. According to the labeled examples, it constructs three initial classification networks by using different strategies with lager differences. Unlabeled examples can be labeled by using the initial classification networks, so that the examples can be joined into the labeled examples and the parameters of the classification network can be rectified. The steps are repeated to increase the labeled samples until a steady classifier is trained. Experimental results show that the algorithm is feasible and effective than CML and semi-supervised learning algorithm based on Naive Bayes(NB) classifier.

同期刊论文项目
期刊论文 37 会议论文 14 著作 1
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139