This paper presents a study of the inverse magnetocaloric effect (MCE) corresponding to martensitic transition using various experimental approaches for Ni46Cu4Mn38Sn12 and Ni50CoMn34In15 Heusler alloy. Through heat capacity measurements,it is found that the "giant inverse MCE" upon martensitic transition evaluated by the Maxwell relation in these alloys are unphysical results. This is due to the coexistence of both martensitic and austenitic phases,as well as thermal hysteresis during martensitic transition. However,careful study indicates that the spurious results during martensitic transition can be removed using a Clausius-Clapeyron equation based on magnetization measurements.
This paper presents a study of the inverse magnetocaloric effect (MCE) corresponding to martensitic transition using various experimental approaches for Ni46Cu4Mn38Sn12 and NisoCoMn34In]5 Heusler alloy. Through heat capacity measurements, it is found that the "giant inverse MCE" upon martensitic transition evaluated by the Maxwell relation in these alloys are unphysical results. This is due to the coexistence of both martensitic and austenitic phases, as well as thermal hysteresis during martensitic transition. However, careful study indicates that the spurious results during martensitic transition can be removed using a Clausius Clapeyron equation based on magnetization measurements.