数据同化可有效结合模型与观测数据,提高模型的模拟与预测能力,近20年来,伴随数据同化在水生态动力学模型中有着广泛的应用。比较了数据同化各类方法的特点,简述了伴随同化方法的基本原理,从优化模型参数与初始场、改进模型结构两个方面总结了伴随同化在水生态动力学模型中的国内外应用情况,分析了水生态动力学模型伴随同化研究的3个关键影响因素(观测数据、控制变量和模型参数时空变化),探讨了伴随同化在水生态动力学模型中所面临的挑战及发展趋势,指出了伴随同化在湖库生态动力学模型中的应用研究有待加强。
Data assimilation can combine model with observation effectively and improve the simulation and prediction ability of model, and the adjoint method has wide applications in water ecosystem dynamics model over the past twenty years. The characteristics of different data assimilation methods are compared, and the basic principle of the adjoint method is briefly introduced, and the applications of the adjoint method in water ecosystem dynamics model from aspects of optimizing model parameters and initial field and improving the model structure are summarized, and three critical influence factors of the adjoint system( namely observation data, control variables and temporal and spatial variation of the model parameters) are analyzed, challenges and trends are discussed. In addition, it is pointed out that the study of the ad- joint method in lakes and reservoirs ecosystem dynamics model should be strengthened.