位置:成果数据库 > 期刊 > 期刊详情页
径向基函数在三维Euler方程数值计算中的应用
  • ISSN号:0258-1825
  • 期刊名称:空气动力学学报
  • 时间:0
  • 页码:231-234
  • 分类:O175.29[理学—数学;理学—基础数学] TU855[建筑科学]
  • 作者机构:[1]Department of Mathematics and Systems Science, College of Science, National University of Defense Technology, Changsha 410073, China, [2]State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Grant Nos. 10971226, 91130013, and 11001270), the National Basic Research Program of China (Grant No. 2009CB723802), the Research Innovation Fund of Hunan Province, China (Grant No. CX2011B011), and the Innovation Fund of National University of Defense Technology, China (Grant No. B120205).
  • 相关项目:非结构网格有限体积方法及其自适应研究
作者: 钱旭|宋松和|
中文摘要:

<正>We propose a multi-symplectic wavelet splitting method to solve the strongly coupled nonlinear Schrodinger equations.Based on its multi-symplectic formulation,the strongly coupled nonlinear Schr(o|¨)dinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem.For the linear subsystem,the multi-symplectic wavelet collocation method and the symplectic Buler method are employed in spatial and temporal discretization,respectively.For the nonlinear subsystem,the mid-point symplectic scheme is used.Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.

英文摘要:

We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic wavelet collocation method and the symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《空气动力学学报》
  • 中国科技核心期刊
  • 主管单位:中国空气动力研究与发展中心
  • 主办单位:中国空气动力学会
  • 主编:邓小刚
  • 地址:四川省绵阳市二环路南段6号13-11信箱
  • 邮编:621000
  • 邮箱:kqdlxxb@aas.cardc.com
  • 电话:0816-2463287
  • 国际标准刊号:ISSN:0258-1825
  • 国内统一刊号:ISSN:51-1192/TK
  • 邮发代号:62-27
  • 获奖情况:
  • 1997年获中国科协评比的“全国优秀科技期刊二等奖”,1997年获中宣部、国家新闻出版局、国家科委“第二...
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:6089