研究一类非线性发展方程整体弱解的长时间行为,首先利用算子分解方法证明了系统整体弱解的渐近正则性,由此得到了整体弱解对应的解半群在H1(R3)×H1(R3)的全局吸引子A的存在性,然后证得A在H2(R3)×H2(R3)有界,其中非线性项满足临界指数增长.
The long-time behavior of the weak solutions for a class nonlinear evolution equations with critical nonlinearity is considered.By proving the asymptotic regularity of the solutions to establish the existence of the global attractors A,finally,we get A is also bounded in H2(R3)×H2(R3).