用可变分离途径,我们与任意的可变分离函数获得一个一般准确解决方案为(2+1 ) 维的碎 soliton 系统。由介绍 Jacobi 在种子答案的椭圆形的功能,二倍地周期的宣传的二个家庭挥动模式被导出。我们与不同模量 m 选择调查这些周期的波浪答案,许多重要、有趣的性质被揭示。Jabcobi 椭圆形的功能波浪的相互作用图形地被考虑并且发现了无弹性。
Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in the seed solution, two families of doubly periodic propagating wave patterns are derived. We investigate these periodic wave solutions with different modulus m selections, many important and interesting properties are revealed. The interaction of Jabcobi elliptic function waves are graphically considered and found to be nonelastic.