研究了可压等熵Navier-Stokes-Poisson方程的弱解与空间区域的关系.证明了有界区域Ωn(∈R^3)上的弱解收敛到有界区域Ω上的弱解.利用空间区域的性质,可以得到一般非光滑有界的非空区域上弱解的存在性.
We consider the Navier-Stokes-Poisson system of barotropic compressible flow. We prove that solutions to this problemdefined on a sequence of spatial domainsΩn(∈R^3)converge to a solution of the same problem on a domain Ω,where Ω is the limit of Ωn, in some sense. And then we know the equations can be solved in a more general domain.