研究了下面带有初值条件的分数阶微分方程D1+αu-Δu+(-Δγ)/2 Dβu=|u|p的柯西问题.其中p〉1,-1〈α〈1,0〈γ≤2且0〈β〈2.通过采用检验函数的方法,证明了局部和整体的非存在性结果,并给出了它们存在的必要条件.这些结果改善并延伸了以前的结果.
We consider the Cauchy problem for the fractional differential equation D1+αu-Δu+(-Δ)r/2Dβu=|u|p,with given initial data and where p1,-1α1,0r≤2 and 0β2.Nonexistence results and necessary conditions for local and global existence are established by means of the test-function method.These results improve and extend previous works.