位置:成果数据库 > 期刊 > 期刊详情页
基于高斯粒子JPDA滤波的多目标跟踪算法
  • 期刊名称:电子与信息学报
  • 时间:0
  • 页码:2686-2690
  • 语言:中文
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安电子科技大学电子工程学院,西安710071
  • 相关基金:国家自然科学基金(60871074)资助课题
  • 相关项目:基于被动多传感器的目标跟踪方法研究
中文摘要:

在多目标跟踪中,由于观测的不确定性带来数据关联问题,并且,多目标状态空间尺寸的增长带来了维数增大问题,该文提出了一种新的高斯粒子联合概率数据关联滤波算法(GP-JPDAF),在JPDA框架中引入高斯粒子滤波(GPF)的思想,通过高斯粒子而不是高斯量,来近似目标与观测的边缘关联概率,利用GPF计算目标状态的预测及更新分布。将其应用于被动多传感器多目标跟踪,仿真结果表明该算法比MC-JPDAF具有更好的跟踪性能。

英文摘要:

In multi-target tracking,aiming at the data association problem that arises due to indistinguishable measurements in the presence of clutter,and the curse of dimensionality that arises due to the increased size of the state-space associated with multiple targets,a novel algorithm based on Gaussian Particle Joint Probabilistic Data Association Filter(GP-JPDAF) is proposed,which introduces Gaussian Particle Filtering(GPF) concept to the JPDA framework.For each of the targets,the marginal association probabilities are approximated with Gaussian particles rather than Gaussians in the JPDAF.Moreover,GPF is utilized for approximating the prediction and update distributions.Finally,the proposed method is applied to passive multi-sensor multi-target tracking.Simulation results show that the method can obtain better tracking performance than Monte Carlo JPDAF(MC-JPDAF).

同期刊论文项目
同项目期刊论文