位置:成果数据库 > 期刊 > 期刊详情页
基于稀疏表示的图像超分辨率重建快速算法
  • 期刊名称:系统工程与电子技术
  • 时间:0
  • 页码:2696-2700
  • 语言:中文
  • 分类:TP39[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机科学与技术学院,江苏南京210094, [2]中国人民解放军总参谋部第六十研究所三维仿真实验室,江苏南京210016
  • 相关基金:国家高技术研究发展计划(863计划)(2007AA12Z142); 国家自然科学基金(60672074 60802039); 江苏省研究生创新基金资助课题
  • 相关项目:基于形态分量分析的图像超分辨重建机理与算法研究
中文摘要:

基于图像在过完备字典下的稀疏表示,建立了稀疏性正则化的多帧图像超分辨凸变分模型。模型中的正则项刻画了理想图像的稀疏性先验约束,保真项度量其在退化模型下与观测图像的一致性。基于线性化Bregman方法,将正则项替换为其Bregman距离,对保真项进行线性化,从而可将原问题解耦,进而提出求解该模型的两步迭代算法:第一步为仅对正则项的阈值收缩操作,第二步为仅对保真项的梯度下降操作。此方法大幅度降低了计算复杂性,并能够对噪声保持鲁棒。实验结果表明,只需较少次数的迭代就可获得很好的超分辨重建结果,验证了本文模型与算法的有效性。

英文摘要:

In terms of sparse representations of the underlying image in an over-complete dictionary,a sparsity regularized convex variational model for multi-frame image super-resolution is proposed.The regularization term constrains the underlying image to have a sparse representation in a proper over-complete dictionary.The fidelity term restricts the consistency with the measured image in terms of the data degradation model.Furthermore,by replacing the regularization term with its Bregman distance and linearizing the fidelity term,this convex variational problem is decoupled and a fast two step numerical iteration algorithm is proposed to solve it in terms of the linearized Bregman method.The first step is threshold shrinkage with respect to only the regularization term and the second step is to use the gradient descent dealing with only the fidelity term,thus the numerical complexity is decreased rapidly and is robust to noise.Numerical results for optics images demonstrate that only a few iterations can obtain very well results,thus both our super-resolution model and numerical algorithm are effective.

同期刊论文项目
同项目期刊论文