大多数机器学习算法能得到较好的分类效果,但模型却无法解释;而随机森林等模型有良好的可解释性,却无法处理中医数据中兼证的情况。本文利用极值随机森林算法对慢性胃炎中医数据进行证候分类研究,其中决策树的叶节点能输出多个标签,通过加权机制综合分量来处理兼证问题。与已有多标记学习算法和C4.5、CART等基于决策树的算法进行比较,实验结果表明,极值随机森林算法无论在6个证型的分类准确率上,还是在多标记评价指标上都具有更好的效果,而且模型中得到的规则基本符合中医理论。