从非线性薛定谔方程和热扩散的泊松方程出发, 采用分步傅里叶算法以及多重网格法, 对两束光在(1+2)维热非局域介质中的相互作用规律进行了研究.结果表明, 在传输过程中, 两束光以互相缠绕的方式前进.如果选择适当的入射功率、光束间距和倾斜参量, 两束光的传输轨迹在(X, Y)平面上的投影近似为圆形; 而在保持入射功率和倾斜参量的大小不变的情况下, 如果仅改变光束入射时的间距, 两束光中心的轨迹在(X, Y) 平面上的投影依然近似成圆形. 由于在热非局域介质中存在特殊的非线性折射率形成机制, 所以尽管两束光离边界很远, 但是仍然能够感受到边界的影响; 在输入光整体偏离介质中心或两光束倾斜参量的绝对值不相等时, 它们整体做振荡传输.
According to the nonlinear Schr?dinger equation and Poisson equation of thermal diffusion, we investigate the interaction of double beams in (1+2)-dimension thermal nonlocal medium, using the slip-step Fourier algorithm and multi-grid method. The results show that the two beams intertwine with each other during propagation. If the power and the tilt parameter are appropriate, the projections of the trajectories of the beams in (X, Y) plane are approximately circle, even if the incident distance between the beams is changed. Because of the strongly nonlocal property of thermal medium, the influences of boundaries and initial transverse momentum can be felt when beams are far from the boundaries; there will be an oscillatory propagation when the mass center of the input field deviates from sample center or the initial transverse momentum is unequal to zero.