对非局域非线性介质中的空间暗孤子进行了研究.理论上运用牛顿迭代法求解非局域非线性薛定谔方程,得到了不同传播常数下的非局域空间暗孤子的数值解,发现在任何非局域程度以及任何传播常数条件下,都存在暗孤子的解,而且孤子的束宽与非局域程度存在一定的关系.实验上,在染料溶液中观测到了空间暗孤子在非局域非线性介质中的形成.利用输入功率所引起的非线性效应强度的变化,分析了背景光波形对暗孤子的影响,数值模拟结果与实验结果相符合.
In this paper,we investigate spatial dark solitons in nonlocal nonlinear media.Based on the nonlocal nonlinear Schrdinger equation and the diffusion equation,the numerical solutions with different propagation constants are obtained by using the Newton iterative method.And it is found that there exist dark soliton solutions.and the relation between the width of dark soliton and the degree of nonlocality for any propagation constant under arbitrary nonlocal degrees different propagation constants.In experiments,we observe the formation of the spatial dark solitons in the solution of dye.The influence of Gaussian background on dark solitons is also discussed,and the numerical results are in agreement with the experimental results.