位置:成果数据库 > 期刊 > 期刊详情页
一种互信息梯度不变的非线性特征提取方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]黄淮学院计算机科学系,河南驻马店463000, [2]武汉大学电子信息学院,武汉430079
  • 相关基金:国家自然科学基金资助项目(40930532); 郑州市重大科技攻关项目(072SGZS38042)
中文摘要:

针对线性的互信息特征提取方法,通过研究互信息梯度在核空间中的线性不变性,提出一种快速、高效的非线性特征提取方法。该方法采用互信息二次熵快速算法及梯度上升的寻优策略,提取有判别能力的非线性高阶统计量;在计算时避免传统非线性特征提取中的特征值分解运算,有效降低计算量。通过UCT数据的投影和分类实验表明,该方法无论在投影空间的可分性上,还是在算法时间复杂度上,都明显优于传统算法。

英文摘要:

This paper proposed a fast and effective method of nonlinear feature extraction by studying the linear invariance of mutual information gradient in the linear mutual information feature extraction. It employed a fast algorithm for mutual information and gradient ascent which avoid the eigenvalue decomposition of the traditional nonlinear transformation. In this way,the extracted features could reflect the characteristics of discriminative higher-order statistics,and effectively reduce the computational complexity. Experiments with the UCI read data show that the proposed approach performs well in projection and classification performance,and is better than traditional nonlinear algorithms for the time complexity.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049