位置:成果数据库 > 期刊 > 期刊详情页
基于描述特征改进的LVQ神经网络美元识别研究
  • ISSN号:1003-3254
  • 期刊名称:《计算机系统应用》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中南大学信息科学与工程学院,湖南长沙410004
  • 相关基金:基金项目:湖南省自然科学基金项目(07115077);国家自然科学基金资助项目(60503007)
中文摘要:

针对货币识别中残币、旧币、假币识别的难度大和正确性不高等问题,提出了一种基于描述特征的改进LVQ的神经网络的美元识别算法。该算法首先使用基于描述特征的主成分分析技术(MEFFRA)提取美元的主要特征,然后使用MLVQ神经网络进行识别。不仅降低了货币特征提取时的复杂度,同时也克服了GLVQ和GLVQ—F算法的性能不稳定和对初值敏感性的理论缺陷,是一种更加优化的有师荤习算法。试验结果表明.把该算法用于美元识别.有很好的效果。

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机系统应用》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所
  • 主编:苏振泽
  • 地址:北京8718信箱
  • 邮编:100190
  • 邮箱:csa@iscas.ac.cn
  • 电话:010-62661041
  • 国际标准刊号:ISSN:1003-3254
  • 国内统一刊号:ISSN:11-2854/TP
  • 邮发代号:82-558
  • 获奖情况:
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2000版)
  • 被引量:15201