讨论了偶数阶三点边值问题:(-1)^my^(2m)=f(t,y),0≤t≤1,u(t)=u(1-t),αiu^(2i)(0)-βiu^(2i)(1)=γiu(1/2),0≤i≤m-1.对称正解的存在性条件.借助于Leggett-Williams不动点定理,建立了该问题存在三个及任意奇数个对称正解的充分条件.
This paper discusses the existence of positive solution to the following even order boundary value problem(-1)my(2m)=f(t,y),0≤t≤1,u(t)=u(1-t),αiu^(2i)(0)-βiu^(2i)(1)=γiu(1/2),0≤i≤m-1. Sufficient conditions are obtained for existence of three or arbitrary odd symmetric positive solutions of the above problem by using LeggettWilliams fixed point theorem.