设T是一个测度链(时间标架)并且0,T∈T.讨论测度链上m-点边值问题 u^△△↓(t)+a(t)f(t,u(t))=0,t∈(0,T), βu(0)-γu^△(0)=0,u(T)=m-2∑i-1aiu(ξi),m≥3, 其中a∈Cld((0,T),[0,∞)),f∈C((0,T)×[0,∞),[0,∞)),β,γ∈[0,∞),ξI∈(0,p(T)),ai∈[0,∞)(i=1,…,m-2)是一些满足适当条件的定常数.借助于锥上的不动点定理,得到了此问题存在单个及多个正解的一些新的更一般的结果.特别地,我们的结果推广并改进了一些已有的结论.
Let T be a time scale such that 0, T ∈ T. Consider the following m-point boundary value problem on time scales u^△△↓(t)+a(t)f(t,u(t))=0,t∈(0,T), βu(0)-γu^△(0)=0,u(T)=m-2∑i-1aiu(ξi),m≥3, where a∈Cld((0,T),[0,∞)),f∈C((0,T)×[0,∞),[0,∞)),β,γ∈[0,∞),ξI∈(0,p(T)),ai∈[0,∞)(i=1,…,m-2)are given constants satisfying some suitable hypotheses. By means of fixed point theorems in cones, some new and general results are obtained for the existence of single and multiple positive solutions of the above problem. In particular, our criteria generalize and improve some known results.