位置:成果数据库 > 期刊 > 期刊详情页
结合轮廓粗筛和HOG细分的快速行人检测方法
  • ISSN号:0258-7998
  • 期刊名称:《电子技术应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江长征职业技术学院计算机与信息技术系,浙江杭州310012, [2]河南经贸职业学院信息管理系,河南郑州450018, [3]郑州大学信息工程学院,河南郑州450001
  • 相关基金:国家自然科学基金项目(61379079)
中文摘要:

为解决现有行人检测方法虚警率高、运算效率低的问题,提出一种快速行人检测方法。首先,依靠轮廓的几何特征进行第一层粗筛选,依据轮廓的不变矩特征进行第二层粗筛选,剔除干扰目标,降低虚警率。在此基础上,裁剪图像上的可疑图像块,仅在可疑图像块上提取HOG特征,并结合线性支持向量机进行特征分类,进一步降低虚警率。同时由于大幅减少了提取HOG特征的数量,从而提高了运算效率。仿真实验在INRIA数据集上进行训练,在Caltech数据集上进行验证。结果表明,该方法的行人检测虚警率低,运算效率高。

英文摘要:

For solving the problems of high false alarm rate and low efficiency of existing pedestrian detection methods, a fast pedestrian detection method is proposed. First, this paper executes contour rough selection of the first layer according to geometric features of the contours, and executes the one of the second layer according to the invariant moments of the contours, to remove false-targets and reduce false alarm rate. On this basis, this paper crops the suspicious image patches and only extracts histogram of oriented gradients( HOG) features on these image patches, and then uses linear support vector machines to classify these features,for further reducing the false alarm rate. Meanwhile, the efficiency is improved because the number of HOG feature extraction is sharply reduced. Simulations train and verify features on INRIA and Caltech dataset, respectively. Results show that the new method has low false alarm rate and high efficiency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子技术应用》
  • 中国科技核心期刊
  • 主管单位:中国电子信息产业集团有限公司
  • 主办单位:华北计算机系统工程研究所
  • 主编:杨晖
  • 地址:北京市海淀区清华路25号
  • 邮编:100083
  • 邮箱:xinzw@ncse.com.cn
  • 电话:010-66608981 66608982
  • 国际标准刊号:ISSN:0258-7998
  • 国内统一刊号:ISSN:11-2305/TN
  • 邮发代号:2-889
  • 获奖情况:
  • 国家期刊奖,中文核心期刊奖,中国科技期刊奖,电子精品科技期刊
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:20858