位置:成果数据库 > 期刊 > 期刊详情页
基于遗传算法和简化PCNN的裂缝检测方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:郑州大学信息工程学院,郑州450001
  • 相关基金:国家科技支撑计划资助项目(2014BAH09F00);国家自然科学基金资助项目(61379079)
中文摘要:

为能够在复杂背景下检测裂缝、分析裂缝图像特征,由脉冲耦合神经网络(pulse coupled neural networks,PCNN)的运行特征和神经元的状态变化分析简化PCNN模型,将简化PCNN模型用于裂缝图像的目标检测。针对PCNN无法确定裂缝图像的最优检测以及脉冲门限具有非线性因子的问题,提出了一种基于遗传算法(genetic algorithm,GA)和简化PCNN的裂缝图像检测方法。该方法采用最小误差准则作为遗传算法的适应度函数,并且根据遗传算法具有全局最优解的特点确定简化PCNN中各因子的值,实现了简化PCNN的裂缝图像自动分割。将该方法与不同的分割方法对实际裂缝图像的处理结果进行比较,通过区域对比度、准确率和召回率等客观指标进行定量分析,表明了该方法对裂缝图像检测的有效性与通用性。

英文摘要:

In order to detect cracks and analyze the characters of crack images in complicated background, PCNN model is simplified through analyzing of its running characters and the state changes of nerve ceils, this paper used the simplified PCNN model in target detection of crack image. For PCNN model was not sure of the optimal detection of the crack images and pulse threshold with nonlinear factor, this paper proposed a method of crack detection of crack images based on genetic algorithm and optimized PCNN model. The method was on the minimum error principle as the fitness function of genetic algorithm, and according to the characteristics of the genetic algorithm had the global optimal solution to determine value of each factor in simplified PCNN model to realize automatic segmentation of simplified PCNN crack images. Comparing the processed results with other methods of segmentation came from the real crack images, it conducted quantitative analysis for the image after segmentation using region contrast, precision and recall objective indexes. Experiment results show that the proposed crack detection method is effective and universal.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049