位置:成果数据库 > 期刊 > 期刊详情页
在线电影评论倾向性分类算法研究
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP393.08[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安交通大学机械制造系统工程国家重点实验室,西安710049, [2]西安交通大学智能网络与网络安全教育部重点实验室,西安710049, [3]西安交通大学电信学院系统工程研究所,西安710049
  • 相关基金:国家自然科学基金No.60774086; 国家高技术研究发展计划(863)(No.2007AA01Z464 No.2007AA01Z475)
中文摘要:

研究网络在线评论的倾向性分类能够及时了解民众对当前事件、热点话题的态度和心理状态,从而为相关领域的决策提供依据。针对网络在线电影评论倾向性分类问题,提出了基于网络词语扩展及属性约简的解决算法,该算法利用相关度测量对垃圾评论进行剔除,针对网络语言自身特点对其属性进行扩展,使用词频和信息增益分两步进行特征选择,构建特征属性进行分类。实验结果表明,使用该算法后,分类准确率等各项指标得到了提高。

英文摘要:

The research on online comments can promptly understand the public’s attitudes and mental states to current events and hot topics,so it can provide basis for the decision-making for the relative fields.In this paper,an algorithm based on extension of network words and feature selection is proposed to solve the tendency of online movie comments.The garbage comments are eliminated using relevancy measurement,and then features are extended according to the characteristics of online comments.The features are selected for classification based on frequency of words and information gain.The results show that after using this method,the accuracy and other indexes of classification are improved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887