位置:成果数据库 > 期刊 > 期刊详情页
基于蜜蜂进化型遗传算法的电力系统无功优化
  • ISSN号:1000-1565
  • 期刊名称:《河北大学学报:自然科学版》
  • 时间:0
  • 分类:TM714.3[电气工程—电力系统及自动化]
  • 作者机构:[1]河北大学电子信息工程学院,河北保定071002
  • 相关基金:国家自然科学基金资助项目(11271106)
中文摘要:

采用蜜蜂进化机制与遗传算法相结合的蜜蜂进化型遗传算法(beeevolutionarygeneticalgo—rithm,BEGA)对电力系统进行无功优化计算.该算法以一定概率将蜂王(最优个体)与雄蜂(被选的个体)2部分进行交叉,因此对最优个体包含信息的开采能力得以增强.随机种群的引入,降低了算法出现过早收敛的可能性,保持了种群多样性.应用BEGA对IEEE6节点系统进行无功优化计算的结果表明:较其他算法,BEGA具有更强的全局寻优能力和更快的收敛速度.

英文摘要:

A method based on bee evolution modifying genetic algorithm(BEGA)is presented for power system reactive power optimization. In this algorithm, the best chromosome called queen-bee among the current population is crossover with drones selected according to a certain crossover probability, which en- hances the exploitation of searching global optimum. In order to avoid premature convergence, BEGA intro- duces a random population that extends search area. Consequentially it keeps the diversity of population. The presented method has been tested in IEEE6 bus systems, compared with other algorithms, the results show that. the ability of overall searching optimal solution is better and convergence speed is higher.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《河北大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:河北省教育厅
  • 主办单位:河北大学
  • 主编:傅广生
  • 地址:保定市五四东路180号
  • 邮编:071002
  • 邮箱:hbdxxbz@hbu.edu.cn
  • 电话:0312-5079413
  • 国际标准刊号:ISSN:1000-1565
  • 国内统一刊号:ISSN:13-1077/N
  • 邮发代号:18-257
  • 获奖情况:
  • 2008年10月荣获第二届中国高校优秀科技期刊奖,2008年荣获2006-2007年度河北省优秀科技期刊奖,2009年8月被河北省教育厅命名为2004-2008年度河北...,2009年8月在中国北方优秀期刊评选活动中被评为"中...,2009年10月荣获2009年全国高校科技期刊优秀编辑质量奖,2010年10月荣获第三届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),美国剑桥科学文摘,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘
  • 被引量:5593