位置:成果数据库 > 期刊 > 期刊详情页
拓展集合差异度高维数据聚类
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京科技大学经济管理学院,北京100083, [2]海信集团海信学院,山东青岛266071
  • 相关基金:国家自然科学基金资助项目(70771007); 中央高校基本科研业务费专项资金资助项目(FRF-TP-10-006B)
中文摘要:

提出度量多个集合之间总体差异程度的拓展集合差异度及相关定理,并给出一种新的解决分类属性高维数据聚类问题的CAESD算法。基于拓展集合差异度及拓展集合特征向量,在CABOSFV_C聚类的基础上通过两阶段聚类完成全部聚类过程。采用UCI数据集与K-modes及其改进算法、CABOSFV_C算法进行比较实验,结果表明CAESD算法具有较高的聚类正确率。

英文摘要:

This paper proposed extended set dissimilarity and related theory to measure the general dissimilarity among sets,and proposed a new algorithm to cluster high dimensional data named as clustering algorithm based on extended set dissimilarity for categorical attributes(CAESD),which executed two steps clustering process using extended set dissimilarity and extended set feature vector on the basis of CABOSFV_C algorithm.Comparative tests using UCI data sets show that CAESD algorithm has higher clustering accuracy than K-modes algorithm,improved approaches of K-modes and CABOSFV_C algorithm.

同期刊论文项目
期刊论文 38 会议论文 12
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049