位置:成果数据库 > 期刊 > 期刊详情页
基于SVM的流行音乐中人声的识别
  • ISSN号:1002-8331
  • 期刊名称:计算机工程与应用
  • 时间:0
  • 页码:126-128
  • 语言:中文
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001
  • 相关基金:基金项日:国家高技术研究发展计划(863)(the National High-Tech Research and Development Plan of China under Grant No.2006AA01Z197).
  • 相关项目:基于认知半监督持续学习的连续语音识别方法研究
中文摘要:

针对流行音乐中人声的发现问题,使用SVM分类器针对MFCC特征进行训练和分类。依据音频特征的连续性,后期对分类结果进行低通滤波。实验结果表明,该方法在帧层面上的识别率可以达到85.76%。实验中也发现不同语种的演唱者在发音上,特别是在MFCC特征上存在很大的统计差异性。实验中对歌曲分类的结果可以作为近一步实现音乐相似性度量的依据之一。

英文摘要:

Facing the problem of vocal discrimination in pop music,the authors propose applying MFCC parameters as features, and Support Vector Machine (SVM) as classifier.Due to the continuity of audio signal features,the authors consider low-pass filtering to the classification results as post-processing.Experiment results show that at frame level,a quite promising classification accuracy of 85.76% can be obtained.It is also revealed that singers with different languages have large vocal differences in pronunciation, especially in MFCC feature statistics.The classification results may be used as a similarity measure for music structure analysis in the future work.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887