位置:成果数据库 > 期刊 > 期刊详情页
一种大规模高维数据快速聚类算法
  • ISSN号:0254-4156
  • 期刊名称:《自动化学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001
  • 相关基金:国家高技术研究发展计划(863计划)(2006AA01Z197,2007AA01Z172),国家自然科学基金(60435020)资助
中文摘要:

提出了一种面向大规模高维数据的自组织映射聚类算法.算法通过压缩神经元的特征集合,仅选择与神经元代表的文档类相关的特征构造神经元的特征向量,从而减少了聚类时间.同时由于选取的特征能够将映射到不同神经元的文档类进行有效区分,避免了无关特征的干扰,因而提升了聚类的精度.实验结果表明该方法能够有效加快聚类的速度,提升聚类的准确度,达到比较理想的聚类效果.

英文摘要:

A novel self-organizing-mapping algorithm for large-scale and high dimensional data is proposed in this paper. By compressing neurons~ feature sets and only selecting relative features to construct neurons' feature vectors, the clustering time can be dramatically decreased. Simultaneously, because the selected features can effectively distinguish different documents which are mapped to different neurons, the algorithm can avoid interferences of irrelative features and improve clustering precision. Experiments results demonstrate that this methodology can accelerate clustering speed and improve clustering precision significantly and can reach relatively ideal clustering effect.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550