位置:成果数据库 > 期刊 > 期刊详情页
一种新的关联规则挖掘算法研究
  • 期刊名称:计算机应用研究;拟发表在08年第10期或第11期。(有录用通知)
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]广东工业大学自动化学院,广州510640, [2]广东工业大学计算机学院,广州510640, [3]广州中医药大学基础医学院,广州510405
  • 相关基金:国家自然科学基金资助项目(30472122)
  • 相关项目:多种信息融合技术建立瘀血舌象五脏辨病类证系统的研究
中文摘要:

通过分析数据关联的特点和已有的关联规则挖掘算法,在定量描述的准确性和算法高效性方面作了进一步研究,提出了更准确的支持度和置信度定量描述方法和关联关系强弱的定量描述方法。同时,改进了FP-growth挖掘算法,并应用于中医舌诊临床病例数据库挖掘实验中,可成功准确地提取中医舌诊诊断规则。测试结果表明该算法速度快、准确度高。

英文摘要:

By analyzed the characteristics of data association and the mining algorithm of association rules that have been put forward, advanced research have been made in every field of accuracy of quantitative description and high efficiency of algorithm. The article put forward a more efficiency method of quantitative description about support degree and confidence degree, and a method of quantitative description about strength of association relationship. Meanwhile the article improved FPgrowth mining algorithm and applied it to mining experiment on clinical diseases database in the traditional Chinese medicine (TCM) tongue diagnosis. The algorithm could accurately draw diagnosis rule from (TCM) tongue diagnosis successfully. The application result in make clear that, the algorithm can be faster and accurate more.

同期刊论文项目
同项目期刊论文