提出了对象及其特征数据的一些特性指标:对象的相似度、复杂度、隐蔽度(或能见度),特征数据的贡献度、常见度、显隐性。在综合分析这些特性的基础上,通过融合模糊神经网络技术及可拓学思想,研究了一种信息非完全的复杂数据智能化处理拓展算法,通过嵌入竞争神经网络的计算模型实现了该算法。在复杂的中医诊断推理过程的应用结果表明,该算法可以较好地应用于处理复杂的中医临床数据。
This paper presented some characteristic parameters of the object and its character data ; the object's similarity degree, complexity degree, and invisibility degree( or visibility degree) ; and the character data' s contribution degree , rate of appearance, external ( or presentational ) and invisible character. On the basis of the characteristics was synthetically analyzed, through combining fuzzy neural network and extenlcs thinking, this article researched an intelligent processing expan- dable algorithm on incomplete and complex data, and by embedding competition neural network' s computing model, realized the algorithm. The application result in the complex Chinese medicine diagnosis process make clear that, the algorithm can be applied to process perplexing Chinese medicine clinical data.